sksurv.meta.Stacking#

class sksurv.meta.Stacking(meta_estimator, base_estimators, *, probabilities=True)[source]#

Meta estimator that combines multiple base learners.

By default, base estimators’ output corresponds to the array returned by predict_proba. If predict_proba is not available or probabilities = False, the output of predict is used.

Parameters:
  • meta_estimator (instance of estimator) – The estimator that is used to combine the output of different base estimators.

  • base_estimators (list) – List of (name, estimator) tuples (implementing fit/predict) that are part of the ensemble.

  • probabilities (bool, optional, default: True) – Whether to allow using predict_proba method of base learners, if available.

estimators_#

The elements of the estimators parameter, having been fitted on the training data.

Type:

list of estimators

named_estimators_#

Attribute to access any fitted sub-estimators by name.

Type:

dict

final_estimator_#

The estimator which combines the output of estimators_.

Type:

estimator

n_features_in_#

Number of features seen during fit.

Type:

int

feature_names_in_#

Names of features seen during fit. Defined only when X has feature names that are all strings.

Type:

ndarray of shape (n_features_in_,)

unique_times_[source]#

Unique time points.

Type:

array of shape = (n_unique_times,)

__init__(meta_estimator, base_estimators, *, probabilities=True)[source]#

Methods

__init__(meta_estimator, base_estimators, *)

fit(X[, y])

Fit base estimators.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get the parameters of an estimator from the ensemble.

predict(X)

Perform prediction.

predict_cumulative_hazard_function(X[, ...])

Perform prediction.

predict_log_proba(X)

Perform prediction.

predict_proba(X)

Perform prediction.

predict_survival_function(X[, return_array])

Perform prediction.

score(X, y)

Returns the concordance index of the prediction.

set_params(**params)

Set the parameters of an estimator from the ensemble.

Attributes

fit(X, y=None, **fit_params)[source]#

Fit base estimators.

Parameters:
  • X (array-like, shape = (n_samples, n_features)) – Training data.

  • y (array-like, optional) – Target data if base estimators are supervised.

Return type:

self

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:

routing – A MetadataRequest encapsulating routing information.

Return type:

MetadataRequest

get_params(deep=True)[source]#

Get the parameters of an estimator from the ensemble.

Returns the parameters given in the constructor as well as the estimators contained within the estimators parameter.

Parameters:

deep (bool, default=True) – Setting it to True gets the various estimators and the parameters of the estimators as well.

Returns:

params – Parameter and estimator names mapped to their values or parameter names mapped to their values.

Return type:

dict

predict(X)#

Perform prediction.

Only available of the meta estimator has a predict method.

Parameters:

X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.

Returns:

prediction – Prediction of meta estimator that combines predictions of base estimators. n_dim depends on the return value of meta estimator’s predict method.

Return type:

array, shape = (n_samples, n_dim)

predict_cumulative_hazard_function(X, return_array=False)#

Perform prediction.

Only available if the meta estimator has a predict_cumulative_hazard_function method.

Parameters:
  • X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.

  • return_array (boolean, default: False) – If set, return an array with the cumulative hazard rate for each self.unique_times_, otherwise an array of sksurv.functions.StepFunction.

Returns:

cum_hazard – If return_array is set, an array with the cumulative hazard rate for each self.unique_times_, otherwise an array of length n_samples of sksurv.functions.StepFunction instances will be returned.

Return type:

ndarray

predict_log_proba(X)#

Perform prediction.

Only available if the meta estimator has a predict_log_proba method.

Parameters:

X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.

Returns:

prediction – Prediction of meta estimator that combines predictions of base estimators. n_dim depends on the return value of meta estimator’s predict method.

Return type:

ndarray, shape = (n_samples, n_dim)

predict_proba(X)#

Perform prediction.

Only available if the meta estimator has a predict_proba method.

Parameters:

X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.

Returns:

prediction – Prediction of meta estimator that combines predictions of base estimators. n_dim depends on the return value of meta estimator’s predict method.

Return type:

ndarray, shape = (n_samples, n_dim)

predict_survival_function(X, return_array=False)#

Perform prediction.

Only available if the meta estimator has a predict_survival_function method.

Parameters:

X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.

Returns:

  • survival (ndarray) – If return_array is set, an array with the probability of survival for each self.unique_times_, otherwise an array of length n_samples of sksurv.functions.StepFunction instances will be returned.

  • return_array (boolean, default: False) – If set, return an array with the probability of survival for each self.unique_times_, otherwise an array of sksurv.functions.StepFunction.

score(X, y)[source]#

Returns the concordance index of the prediction.

Parameters:
  • X (array-like, shape = (n_samples, n_features)) – Test samples.

  • y (structured array, shape = (n_samples,)) – A structured array containing the binary event indicator as first field, and time of event or time of censoring as second field.

Returns:

cindex – Estimated concordance index.

Return type:

float

set_params(**params)[source]#

Set the parameters of an estimator from the ensemble.

Valid parameter keys can be listed with get_params(). Note that you can directly set the parameters of the estimators contained in estimators.

Parameters:

**params (keyword arguments) – Specific parameters using e.g. set_params(parameter_name=new_value). In addition, to setting the parameters of the estimator, the individual estimator of the estimators can also be set, or can be removed by setting them to ‘drop’.

Returns:

self – Estimator instance.

Return type:

object