sksurv.meta.Stacking#
- class sksurv.meta.Stacking(meta_estimator, base_estimators, *, probabilities=True)[source]#
Meta estimator that combines multiple base learners.
By default, base estimators’ output corresponds to the array returned by predict_proba. If predict_proba is not available or probabilities = False, the output of predict is used.
- Parameters:
meta_estimator (instance of estimator) – The estimator that is used to combine the output of different base estimators.
base_estimators (list) – List of (name, estimator) tuples (implementing fit/predict) that are part of the ensemble.
probabilities (bool, optional, default: True) – Whether to allow using predict_proba method of base learners, if available.
- estimators_#
The elements of the estimators parameter, having been fitted on the training data.
- Type:
list of estimators
- named_estimators_#
Attribute to access any fitted sub-estimators by name.
- Type:
dict
- final_estimator_#
The estimator which combines the output of estimators_.
- Type:
estimator
- n_features_in_#
Number of features seen during
fit
.- Type:
int
- feature_names_in_#
Names of features seen during
fit
. Defined only when X has feature names that are all strings.- Type:
ndarray of shape (n_features_in_,)
Methods
__init__
(meta_estimator, base_estimators, *)fit
(X[, y])Fit base estimators.
Get metadata routing of this object.
get_params
([deep])Get the parameters of an estimator from the ensemble.
predict
(X)Perform prediction.
predict_cumulative_hazard_function
(X[, ...])Perform prediction.
Perform prediction.
Perform prediction.
predict_survival_function
(X[, return_array])Perform prediction.
score
(X, y)Returns the concordance index of the prediction.
set_params
(**params)Set the parameters of an estimator from the ensemble.
Attributes
steps
- fit(X, y=None, **fit_params)[source]#
Fit base estimators.
- Parameters:
X (array-like, shape = (n_samples, n_features)) – Training data.
y (array-like, optional) – Target data if base estimators are supervised.
- Return type:
self
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)[source]#
Get the parameters of an estimator from the ensemble.
Returns the parameters given in the constructor as well as the estimators contained within the estimators parameter.
- Parameters:
deep (bool, default=True) – Setting it to True gets the various estimators and the parameters of the estimators as well.
- Returns:
params – Parameter and estimator names mapped to their values or parameter names mapped to their values.
- Return type:
dict
- predict(X)#
Perform prediction.
Only available of the meta estimator has a predict method.
- Parameters:
X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.
- Returns:
prediction – Prediction of meta estimator that combines predictions of base estimators. n_dim depends on the return value of meta estimator’s predict method.
- Return type:
array, shape = (n_samples, n_dim)
- predict_cumulative_hazard_function(X, return_array=False)#
Perform prediction.
Only available if the meta estimator has a predict_cumulative_hazard_function method.
- Parameters:
X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.
return_array (boolean, default: False) – If set, return an array with the cumulative hazard rate for each self.unique_times_, otherwise an array of
sksurv.functions.StepFunction
.
- Returns:
cum_hazard – If return_array is set, an array with the cumulative hazard rate for each self.unique_times_, otherwise an array of length n_samples of
sksurv.functions.StepFunction
instances will be returned.- Return type:
ndarray
- predict_log_proba(X)#
Perform prediction.
Only available if the meta estimator has a predict_log_proba method.
- Parameters:
X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.
- Returns:
prediction – Prediction of meta estimator that combines predictions of base estimators. n_dim depends on the return value of meta estimator’s predict method.
- Return type:
ndarray, shape = (n_samples, n_dim)
- predict_proba(X)#
Perform prediction.
Only available if the meta estimator has a predict_proba method.
- Parameters:
X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.
- Returns:
prediction – Prediction of meta estimator that combines predictions of base estimators. n_dim depends on the return value of meta estimator’s predict method.
- Return type:
ndarray, shape = (n_samples, n_dim)
- predict_survival_function(X, return_array=False)#
Perform prediction.
Only available if the meta estimator has a predict_survival_function method.
- Parameters:
X (array-like, shape = (n_samples, n_features)) – Data with samples to predict.
- Returns:
survival (ndarray) – If return_array is set, an array with the probability of survival for each self.unique_times_, otherwise an array of length n_samples of
sksurv.functions.StepFunction
instances will be returned.return_array (boolean, default: False) – If set, return an array with the probability of survival for each self.unique_times_, otherwise an array of
sksurv.functions.StepFunction
.
- score(X, y)[source]#
Returns the concordance index of the prediction.
- Parameters:
X (array-like, shape = (n_samples, n_features)) – Test samples.
y (structured array, shape = (n_samples,)) – A structured array containing the binary event indicator as first field, and time of event or time of censoring as second field.
- Returns:
cindex – Estimated concordance index.
- Return type:
float
- set_params(**params)[source]#
Set the parameters of an estimator from the ensemble.
Valid parameter keys can be listed with get_params(). Note that you can directly set the parameters of the estimators contained in estimators.
- Parameters:
**params (keyword arguments) – Specific parameters using e.g. set_params(parameter_name=new_value). In addition, to setting the parameters of the estimator, the individual estimator of the estimators can also be set, or can be removed by setting them to ‘drop’.
- Returns:
self – Estimator instance.
- Return type:
object